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Graphs

Molecules

Meshes Functional networks



Graph Neural Network

Generalize CNN to graphs

Permutation equivariant/invariant f(PTAP) = PTf(A)P/f(PTAP) = f(4)
Handles rich node/edge scalar/vector/high-order tensor features

Train on small graphs, generalize to large graphs
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My Research Topics in GNN

Theory

e Expressive power of GNN & Universality [1]

e Convergence and stability [2] (a sequence of graphs)

e Over-Smoothing for GNN [3]

e Hardness of learning combinatorial optimization problems with GNN (ongoing)

Applications

e Graph coarsening [4] (large graph — small graph)
e Molecule modeling [5] (small graph — large graph)

[1] Equivariant Subgraph Aggregation Networks

[2] Convergence of Invariant Graph Networks

[3] A Note on Over-Smoothing for Graph Neural Networks

[4] Graph Coarsening with Neural Networks 4
[5] Generative Coarse-Graining of Molecular Conformations



Convergence of Invariant
Graph Networks

Chen Cai & Yusu Wang

Arxiv 2022, under submission
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Convergence in Deep Learning

Residual Network

Increase width: Neural Tangent Kernel
Increase depth: Neural ODE
Increase input size? Convergence of graph neural network!

ODE Network
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Setup & Existing work

® ®
e Model
o graphon W:[0,1]% - [0,1] ° @@-@
o edge probability discrete model

Connect nodes 3 and 4 with probability W(x3, X4).

o edge weight continuous model
e Mainly study spectral GNN, which has limited expressive power

e \What about more powerful GNN? A

Study the convergence of Invariant Graph Networks (IGN)
under 1) edge probability discrete model and 2) edge
weight continuous model




Invariant Graph Network (IGN)

F=holMog..ogol®
GNN needs to be permutation equivaraint
Characterize linear permutation equivariant functions

15 functions for R» — R™’

Theorem [Maron et al 2018]: The space of linear permutation equivariant
functions R® — R™" is of dimension bell(l + m) (number of partitions of set
{1,2,...,l+ m}



Invariant Graph Network (IGN)

o F=holMog--ogolLl

e Depending on order of intermediate tensor, we have 2-IGN and k-IGN

o 2-IGN:

o Can approximate Message Passing neural network (MPNN)
o Atleast as powerful as 1-WL (Weisfeiler-Leman Algorithm)

o k-IGN

o As k increase, k-IGN reaches universality

Message passing > o(n*-IGN
2-IGN > Quad 2-IGN #IGN  poly 2-IGN

2-WL < 3-WL <...< 4-WL <...

(}olor 2-WL-folklore
Refinement



Operations Discrete Continuous Partitions
1-2: The identity and T(A)=A T(W)=W {{1,3},{2,4}}
transpose operations T(A) = AT T(W) = wT {{1,4}, {2,3}}

3: The diag operation

T (A) = Diag(Diag* (A))

T(W)(ua U) = W(“? 'U)I'u.='u

{{1,2,3,4}}

. T(A) = 1 A117 T(W)(u, *) = [ W (u,v)dv 1,4}, {2}, {3

o row ety gl T(A) = L10anT POV ) = W o (1), {20, {4)
s T(A) = LDiag(A1) T(W)(u, v) = lu=o [ W(u,v')dv’ {{1,3,4}, {2}}
. T(A) = LAT117 T(W)(*,v) = [ W(u, v)du 1}, {2, 4}, {3

79: vengeof ol rplicated gy = £1(4T1)7 TV (o, 0y = W o vy (s b
& T(A) = LDiag(AT1). T(W)(u,v) = ly=y [ W(u',v)du’ {{1},{2,3,4}}

10-11: Average of all elements T(A) = n%(lTAl) 117 T(W)(x,*) = [ W(u, v)dudv {{1}, {2}, {3}, {4}}
replicated on all matrix/ diagonal T(A) = %(17’,41) - Diag(1). T(W)(u,v) = Iy=y [ W(u,v")du'dv’ {{1},{2},{3,4}}

n
12-13: Average of diagonal elements ~ T'(A) = %(1TDiag* (A)) - 11T T(W)(*, %) = [ L=y W(u, v)dudv {{1, 2}, {3}, {4}}
replicated on all matrix/diagonal T(A) = %(ITDiag* (A)) - Diag(1) T(W)(u,v) =Iy=y [ W(u',u)du' {{1, 2}, {3,4}}
14-15: Replicate diagonal elements T(A) = Diag* (A)17T TW)(u,v) = W(u,u) {{1,2,4}, {3}}
on rows/columns T(A) = 1Diag*(A)T T(W)(u,v) = W(v,v) {{1,2,3},{4}}
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2-IGN

e Analysis of basis elements one by one
Spectral norm of some elements is unbounded
e Introducing “partition norm”

Definition (partition norm): The partition norm of 2-tensor A € R™ is defined

(Diag*(A) 1All2
vn ' on

graphon W € W is defined as |[W]|,,,, == W2, wdu,+ [ W2(u, v)dudv)

as [|All,, =

) . The continuous analog of the partition-norm for

Vi € [15]; ”Ti(A)”pn < ”A”pn

11



Space of linear (permutation) equivariant maps

e from [-tensor to m-tensor
e dimension is bell(l + m)

{{1,2},{3,6},{4},{5}}

{3}

S1= {121V S = {{3,6)} USs = {4}, (5}}

{6}

{4}
{5}

Only has input axis

) has both ]
input and output axis

only has output axis

{1}

lifz)

3} ™

Figure 1: Five possible “slices” of a 3-tensor, corre-
sponding to bell(3) = 5 paritions of [3]. From left to
right: a) {{1,2},{3}} b) {{1},{2,3}} o) {{1,3},{2}} &)
{{1},{2}, {3}} o) {{1,2,3}}.
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Edge Weight Continuous Model

N~

Wy W,

cIGN(W,) = cIGN(W)
cIGN(W,)) = cIGN (W) in probability

13



Edge Probability Discrete Model

RMSE;(p.(W), ¢4 (A,5n))

U is the sampling data

Sy is the sampling operator o
Comparison in the discrete space
More natural and more challenging

o

e °
(o} o
|

Add edge 0—O

1/2 with probability Pgg.

2
If (wiry) = x G D > 14

n

RMSEy (f,x) = ||Suf — %”2 - <n-2

n
i=0 j=0



Negative Result

Informal Theorem (negative result) [Cai & Wang, 2022]
Under mild assumptions on W, given any IGN architecture, there exists a set

of parameter 8 such that the convergence of IGNy to cIGNgy is not possible,

i.e., RMSEy (¢p.([W, Diag(X)]), ¢4 ([An, Diag(X,)])) does not converge to 0
as n goes to infinity, where 4,, is 0-1 matrix.

15



Edge Probability Estimation

|14

Does RMSEy (¢.(W), ¢pa (W) converges to 0 in probability?

16



Convergence After Edge Smoothing

Informal Theorem (convergence of IGN-small) [Cai & Wang, 2022]
Assume AS 1-4 and let ., be the estimated edge probability that satisfies

%HW — W||, converges to 0 in probability. Let &, , be continuous and
discrete IGN-small. Then RMSEy, (¢.([W, Diag(X)]), ¢a ([Whxn, Diag(X,)])

converges to 0 in probability.

e Proof leverages

(@)

(@)
(@)
(@)

Statistical guarantee of edge smoothing
Property of basis elements of k-IGN
Standard algebraic manipulation
Property of sampling operator

RMSEy (®.(W), ®4(Wnxn))

— Sy (W) %%(ann)u

< Su®e(W) — Su®e(Wo)|| + [|Su®(Wn) — BaSu(Wo) |
First term: dggn'zation error Second tenn?srampﬁng error

__ 1 —~
+ |2aSu (W) — —=Pa(Waxn)|l ®)
NLD
Third term: ;sgmation error 17

N J




|GN-small

e A subset of IGN

Definition (IGN-small): Let W, ; be a graphon with “chessboard pattern”, i.e.,
it is a piecewise constant graphon where each block is of the same size.
Similarly, define X, zas the 1D analog. IGN-small denotes a subset of IGN

that satisfies S,¢.([Wrz, Diag(Xng)]) = ¢eSn([Wns Diag(Xng)])

(b) (d) (e)

18



IGN-small Can Approximate SGNN Arbitrarily Well

e Spectral GNN (SGNN) z' ™" = p(2%, hi) (L)zY + b{V1,)

e Main GNN considered in convergence literature

e Proofidea:

o It suffice to approximate Lx
o 2-IGN basis functions can compute L and do matrix-vector multiplication

N

D .. use MLP to mix channels
to approximate

.‘ ‘. pointwise multiplication

Node dimension 1 9



Error

Experiments

Stochastic block model
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Summary

A novel interpretation of basis of the space of equivariant maps in k-IGN
Edge weight continuous model:

e Convergence of 2-IGN and k-IGN
e For both deterministic and random sampling

Edge probability discrete model

e Negative result in general
e Convergence of IGN-small after edge probability estimation
e |GN-small approximates spectral GNN arbitrarily well

21



Graph Coarsening with
Neural Networks

Chen Cai, Dingkang Wang, Yusu Wang

ICLR 2021
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Graph Coarsening: Motivation

Make a small graph out of a large graph while preserving some properties
Fundamental operation

Useful for visualization, scientific computing, and other downstream tasks
Edge sparsification algorithm (Spielman & Teng)




Agenda & Key Questions

e \What properties are we trying to preserve?
o Spectral property
o Need to define operators on original and coarse graph (double weighted Laplacian)
e Edge weight optimization
o Most algorithms do not optimize edge weights
o Observation: optimizing edge weights brings significant improvements
e How to assign edge weights (GNN)
o Subgraph regression
o Good generalization




Graph Coarsening

e You can not preserve everything in general. So what properties are you
considering?
e Spectral property!

U
G=G
P

e Define projection/lift operator; operator of interest; and their properties

25



Laplace Operator

e Laplacianongraphs:L=D — W

e Normalized Laplacian: £ = D~Y/2LD~1/?

e Discrete analog of Laplace operator

e Used in spectral thoery, diffusion process, image processing...

26



How to Measure the Quality?

e Compare F(0O¢, f) and T(Oé:f)

T
e F can be quadratic form x”Lx or Rayleigh quotient xxﬁx
e (g, Of are the Laplace operators

e f is graph signal such as the eigenvector of graph Laplacian

28



Example i 7

1/3 1/3 1/3 0 0 0 U= P+ =

P=P=17%" 0 o 1/3 1/3 1/3

- - O O O

OO O = =

Proposition A.2. For any vector & € R", we have that Q3 (Z) = Qr(P*Z). In other words, set
x := P*% as the lift of & in RY, then £T L% = 2T Lx.

Proof. Qr(Uz) = UE)TLUE = #(PH)TLPT2T = $TLé = Qz (&) O

29



Invariants under Lift

Quantity F of interest Qg Projection P  LiftUf Og Invariant under U
Quadratic form Q L p Pt Combinatorial Laplace L Qr(UZ) = Qz(2)
Rayleigh quotientR L  I-1/2(p+)"  p+r-1/2 Doubly-weighted Laplace L Ry (4z) = Ro(Z)
Quadratic form Q £  DY?2pD-'/?2 DY2(Pt)D-'/2 Normalized Laplace £ Qc(UE) = Qx(2)

30



Key Observation

Existing coarsening algorithm does not optimize for edge weight
Theory: iterative algorithm with convergence property

Practice: nearly identical eigenvalues alignment after optimization
So let’s learn the edge weight

minnesota

o cvx: slow and does not generalize
— G.e

o neural network: suboptimal but generalize —— Gee
8 1 —— After Opt

0 250 500 750 1000 1250
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Model Details

Simple feature based on node degree

Graph Isomorphism Network (GIN)

Generic optimization (Adam with constant learning rate)
No bells and whistles

33



Experiment: Proof of Concept

Table 2: The error reduction after applying GOREN.

Algebraic  Heavy  Local var  Local var

Dataset Affinity Distance Edge (edges) (neigh.)
Airfoil 91.7% 88.2% 86.1%  43.2% 73.6%
Minnesota  49.8% 57.2% 30.1% 5.50% 1.60%
Yeast 49.7% 51.3% 37.4%  27.9% 21.1%

Bunny 84.7% 69.1% 61.2%  19.3% 81.6%

34



Experiments

e Extensive experiments on synthetic graphs and real networks
e Synthetic graphs from common generative models

e Real networks: shape meshes; citation networks; largest one has 89k nodes

Table 3: Loss: quadratic loss. Laplacian: combinatorial Laplacian for both original and coarse

graphs. Each entry x(y) is: z = loss w/o learning, and y = improvement percentage.

Synthetic

Real

Dataset BL Affinity gi‘;gg:gc gggzy {_éc:icgzls\)lar Elcz:(iglhgar
BA 0.44 (16.1%) 0.44 (4.4%) 0.68(4.3%) 0.61 3.6%) 0.21(14.1%) 0.18 (72.7%)
ER 036(1.1%) 0.52(0.8%) 035(0.4%) 0.36(02%) 0.18(1.2%) 0.02(7.4%)
GEO 0.71 (87.3%) 0.20 (57.8%) 0.24 31.4%) 0.55(80.4%) 0.10(59.6%) 0.27 (65.0%)
WS 0.45(62.9%) 0.09 (82.1%) 0.09 (60.6%) 0.52 (51.8%) 0.09 (69.9%) 0.11 (84.2%)
CS 0.39 (40.0%) 0.21 (29.8%) 0.17 (26.4%) 0.14 (20.9%) 0.06 (36.9%) 0.0 (59.0%)
Flickr 0.25(10.2%) 0.25(5.0%) 0.19(6.4%) 0.26 (5.6%) 0.11 (11.2%) 0.07 (21.8%)
Physics  0.40 (47.4%) 0.37 (42.4%) 0.32(49.7%) 0.14 (28.0%) 0.15 (60.3%) 0.0 (-0.3%)
PubMed 0.30(23.4%) 0.13 (10.5%) 0.12(15.9%) 0.24 (10.8%) 0.06 (11.8%) 0.01 (36.4%)
Shape 0.23 (91.4%) 0.08 (89.8%) 0.06 (82.2%) 0.17 (88.2%) 0.04 (80.2%) 0.08 (79.4%)

35



Experiment: Generalization

e Generalize to graph from same generative model
e Train on small subgraph, generalize to much large (25x) graphs
e Works for different objective functions

Table 4: Loss: quadratic loss. Laplacian: normalized Laplacian for original and coarse graphs. Each
entry z(y) is: z = loss w/o learning, and y = improvement percentage.

Synthetic

Real

busa BL Amy e fanlmlw

BA 0.13 (76.2%) 0.14 (45.0%) 0.15(51.8%) 0.15(46.6%) 0.14 (55.3%) 0.06 (57.2%)

ER 0.10 (82.2%) 0.10(83.9%) 0.09 (79.3%) 0.09 (78.8%)  0.06 (64.6%) 0.06 (75.4%)

GEO 0.04 (52.8%) 0.01 (12.4%) 0.01 (27.0%) 0.03(56.3%) 0.01 (-145.1%) 0.02 (-9.7%)

WS 0.05(83.3%) 0.01(-1.7%) 0.01 (38.6%) 0.05(50.3%) 0.01 (40.9%) 0.01 (10.8%)

CS 0.08 (58.0%) 0.06 (37.2%) 0.04 (12.8%) 0.05(41.5%) 0.02 (16.8%) 0.01 (50.4%)

Flickr 0.08 (-31.9%) 0.06 (-27.6%) 0.06 (-67.2%) 0.07 (-73.8%) 0.02 (-440.1%) 0.02 (-43.9%)

Physics  0.07 (47.9%) 0.06 (40.1%) 0.04 (17.4%) 0.04 (61.4%) 0.02 (-23.3%) 0.01 (35.6%)

PubMed 0.05(47.8%) 0.05(35.0%) 0.0541.1%) 0.12(46.8%) 0.03 (-66.4%) 0.01 (-118.0%)

Shape 0.02 (84.4%) 0.01 (67.7%) 0.01 (58.4%) 0.02(87.4%) 0.0(13.3%) 0.01 (43.8%) 36




Experiments: non-differentiable objective

e The eigenvalue alignment is non-differentiable w.r.t weights

e Use Rayleigh quotient as a proxy
e More challenging

Table 5: Loss: Eigenerror. Laplacian: combinatorial Laplacian for original graphs and doubly-
weighted Laplacian for coarse ones. Each entry z(y) is: x = loss w/o learning, and y = improve-

ment percentage. | stands for out of memory.

Synthetic

Real

. Algebraic Hea Local var Local var
Dataset  BL Affinity Diftance Edgz:’y (edges) (neigh.)
BA 0.36 (7.1%) 0.17 (82%) 0.22(6.5%) 0.22 (4.7%) 0.11 (21.1%) 0.17 (-15.9%)
ER 0.61 (0.5%) 0.70(1.0%) 0.35(0.6%) 0.36 (0.2%) 0.19 (1.2%) 0.02 (0.8%)
GEO 1.72 (50.3%) 0.16 (89.4%) 0.18 (91.2%) 0.45 (84.9%) 0.08 (55.6%) 0.20 (86.8%)
WS 1.59 (43.9%) 0.11(88.2%) 0.11 (83.9%) 0.58 (23.5%) 0.10 (88.2%) 0.12 (79.7%)
CS 1.10 (18.0%) 0.55(49.8%) 0.33 (60.6%) 0.42 (44.5%) 0.21 (75.2%) 0.0 (-154.2%)
Flickr 0.57 (55.7%) 1 0.33 (20.2%) 0.31 (55.0%) 0.11 (67.6%) 0.07 (60.3%)
Physics  1.06 (21.7%) 0.58 (67.1%) 0.33 (69.5%) 0.35 (64.6%) 0.20 (79.0%) 0.0 (-377.9%)
PubMed 1.25(7.1%) 0.50(15.5%) 0.51(12.3%) 1.19(-110.1%) 0.35(-8.8%) 0.02 (60.4%)
Shape 2.07 (67.7%) 0.24 (93.3%) 0.17 (90.9%) 0.49 (93.0%) 0.11 (84.2%) 0.20 (90.7%)
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Generative Coarse-Graining
of Molecular Conformations

Wujie Wang, Minkai Xu, Chen Cai, Benjamin Kurt Miller, Tess
Smidt, Yusu Wang, Jian Tang, Rafael Gomez-Bombarelli

Arxiv 2022, under submission



Generative Coarse-Graining of Molecular Conformations

Coarse-Graining: speed up molecule dynamics (MD) simulation
Generate novel molecule configurations

Super resolution for geometric graphs

Rotation equivariant & handle vector (type 1) features

p(z]X)

X

X

generative coarse-graining

40



Framework

Variational autoencoder framework

Fix coarse graining map

O(3) equivariant graph encoder & decoder

Test on 2 systems: alanine dipeptide and chignolin
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Results

20 reconstruction accuracy sample quality metric sample diversity metric
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Results
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Future Directions

Characterize expressive power of IGN-small

Can IGN converges after edge smoothing?

Investigating the convergence of GNN in the manifold setting
Hardness result of learning combinatorial optimization with GNN
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Thank you!



