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Graph Neural Network

● Generalize CNN to graphs
● Permutation equivariant/invariant 𝑓 𝑃!𝐴𝑃 = 𝑃!𝑓 𝐴 𝑃/𝑓 𝑃!𝐴𝑃 = 𝑓(𝐴)
● Handles rich node/edge scalar/vector/high-order tensor features
● Train on small graphs, generalize to large graphs
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My Research Topics in GNN

Theory

● Expressive power of GNN & Universality [1]
● Convergence and stability [2] (a sequence of graphs)
● Over-Smoothing for GNN [3]
● Hardness of learning combinatorial optimization problems with GNN (ongoing)

Applications

● Graph coarsening [4] (large graph → small graph)
● Molecule modeling [5] (small graph → large graph)

[1] Equivariant Subgraph Aggregation Networks
[2] Convergence of Invariant Graph Networks 
[3] A Note on Over-Smoothing for Graph Neural Networks
[4] Graph Coarsening with Neural Networks
[5] Generative Coarse-Graining of Molecular Conformations

4



Convergence of Invariant 
Graph Networks

Chen Cai & Yusu Wang
Arxiv 2022, under submission



Convergence in Deep Learning

● Increase width: Neural Tangent Kernel
● Increase depth: Neural ODE
● Increase input size? Convergence of graph neural network!
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Setup & Existing work

● Model
○ graphon 𝑊: 0,1 ! → [0,1]
○ edge probability discrete model
○ edge weight continuous model

● Mainly study spectral GNN, which has limited expressive power
● What about more powerful GNN?
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Study the convergence of Invariant Graph Networks (IGN)
under 1) edge probability discrete model and 2) edge
weight continuous model



Invariant Graph Network (IGN)

● 𝐹 = ℎ ∘ 𝐿 ! ∘ 𝜎 ⋅⋅⋅ ∘ 𝜎 ∘ 𝐿(#)

● GNN needs to be permutation equivaraint 
● Characterize linear permutation equivariant functions
● 15 functions for ℝ%! → ℝ%!

Theorem [Maron et al 2018]: The space of linear permutation equivariant 
functions ℝ%" → ℝ%# is of dimension 𝑏𝑒𝑙𝑙(𝑙 + 𝑚) (number of partitions of set
{1, 2, … , 𝑙 + 𝑚}
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Invariant Graph Network (IGN)

● 𝐹 = ℎ ∘ 𝐿 ! ∘ 𝜎 ⋅⋅⋅ ∘ 𝜎 ∘ 𝐿(#)

● Depending on order of intermediate tensor, we have 2-IGN and 𝑘-IGN
● 2-IGN:

○ Can approximate Message Passing neural network (MPNN)
○ At least as powerful as 1-WL (Weisfeiler-Leman Algorithm)

● 𝑘-IGN
○ As 𝑘 increase, 𝑘-IGN reaches universality
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2-IGN

● Analysis of basis elements one by one
● Spectral norm of some elements is unbounded
● Introducing “partition norm”

Definition (partition norm): The partition norm of 2-tensor 𝐴 ∈ ℝ%! is defined

as 𝐴 &% ≔
'()*∗ +

%
, + !

%
. The continuous analog of the partition-norm for

graphon 𝑊 ∈ 𝒲 is defined as 𝑊 &% ≔ ( ∫𝑊, 𝑢, 𝑢 𝑑𝑢, ∫𝑊, 𝑢, 𝑣 𝑑𝑢𝑑𝑣)
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∀𝑖 ∈ 15 , 𝑇D 𝐴 EF ≤ 𝐴 EF



Space of linear (permutation) equivariant maps

● from 𝑙-tensor to 𝑚-tensor
● dimension is 𝑏𝑒𝑙𝑙(𝑙 + 𝑚)
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Edge Weight Continuous Model
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𝑐𝐼𝐺𝑁 𝑊F → 𝑐𝐼𝐺𝑁 𝑊
𝑐𝐼𝐺𝑁(1𝑊F) → 𝑐𝐼𝐺𝑁(𝑊) in probability



Edge Probability Discrete Model

𝑅𝑀𝑆𝐸!(𝜙" 𝑊 , 𝜙# 𝐴$×$ )

● 𝑈 is the sampling data
● 𝑆- is the sampling operator
● Comparison in the discrete space
● More natural and more challenging

14𝑅𝑀𝑆𝐸" 𝑓, 𝑥 ≔ 𝑆#𝑓 −
𝑥
𝑛 !

= 𝑛$!4
%&'

(

4
)&'

(

𝑓 𝑢% , 𝑢) − 𝑥 𝑖, 𝑗
! */!



Negative Result
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Informal Theorem (negative result) [Cai & Wang, 2022]
Under mild assumptions on 𝑊, given any IGN architecture, there exists a set
of parameter 𝜃 such that the convergence of 𝐼𝐺𝑁. to c𝐼𝐺𝑁. is not possible,
i.e., 𝑅𝑀𝑆𝐸-(𝜙/ 𝑊,𝐷𝑖𝑎𝑔 𝑋 , 𝜙0 𝐴%, 𝐷𝑖𝑎𝑔W(𝑋%) ) does not converge to 0
as 𝑛 goes to infinity, where 𝐴% is 0-1 matrix.



Edge Probability Estimation
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Does 𝑅𝑀𝑆𝐸"(𝜙, 𝑊 , 𝜙- :𝑊(×( converges to 0 in probability?

<latexit sha1_base64="ayMj2VgyP8goGsYOpz8DvadDqsU=">AAACAXicbVBNS8NAEN34WetX1IvgZbEInkoiRT0WvXisYD+gCWGz3bZLN5uwO1FKiBf/ihcPinj1X3jz37htc9DWBwOP92aYmRcmgmtwnG9raXlldW29tFHe3Nre2bX39ls6ThVlTRqLWHVCopngkjWBg2CdRDEShYK1w9H1xG/fM6V5LO9gnDA/IgPJ+5wSMFJgH3oPvMeGBLJ2kEnsAY+YxjLPA7viVJ0p8CJxC1JBBRqB/eX1YppGTAIVROuu6yTgZ0QBp4LlZS/VLCF0RAasa6gkZpGfTT/I8YlRergfK1MS8FT9PZGRSOtxFJrOiMBQz3sT8T+vm0L/0s+4TFJgks4W9VOBIcaTOHCPK0ZBjA0hVHFzK6ZDoggFE1rZhODOv7xIWmdV97xau61V6ldFHCV0hI7RKXLRBaqjG9RATUTRI3pGr+jNerJerHfrY9a6ZBUzB+gPrM8f1lmXJg==</latexit>
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Convergence After Edge Smoothing

● Proof leverages
○ Statistical guarantee of edge smoothing 
○ Property of basis elements of 𝑘-IGN 
○ Standard algebraic manipulation 
○ Property of sampling operator
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Informal Theorem (convergence of IGN-small) [Cai & Wang, 2022]
Assume AS 1-4 and let Y𝑊%×% be the estimated edge probability that satisfies 
#
%
𝑊 − [𝑊 , converges to 0 in probability. Let Φ/ , Φ0 be continuous and 

discrete IGN-small. Then 𝑅𝑀𝑆𝐸-(𝜙/ 𝑊,𝐷𝑖𝑎𝑔 𝑋 , 𝜙0 Y𝑊%×%, 𝐷𝑖𝑎𝑔(]𝑋%)
converges to 0 in probability.



IGN-small

● A subset of IGN

Definition (IGN-small): Let W𝑊%,3 be a graphon with “chessboard pattern’’, i.e., 
it is a piecewise constant graphon where each block is of the same size. 
Similarly, define ]𝑋%,3as the 1D analog. IGN-small denotes a subset of IGN 
that satisfies 𝑆%𝜙/ W𝑊%,3 , 𝐷𝑖𝑎𝑔 ]𝑋%,3 = 𝜙/𝑆% W𝑊%,3 , 𝐷𝑖𝑎𝑔 ]𝑋%,3
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IGN-small Can Approximate SGNN Arbitrarily Well

● Spectral GNN (SGNN) 𝑧4
(56#) = 𝜌(∑(7#

0" ℎ(4
(5) 𝐿 𝑧(

5 + 𝑏4
5 1%)

● Main GNN considered in convergence literature
● Proof idea: 

○ It suffice to approximate 𝐿𝑥
○ 2-IGN basis functions can compute 𝐿 and do matrix-vector multiplication
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Experiments
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Summary

A novel interpretation of basis of the space of equivariant maps in 𝑘-IGN

Edge weight continuous model:

● Convergence of 2-IGN and 𝑘-IGN
● For both deterministic and random sampling

Edge probability discrete model

● Negative result in general
● Convergence of IGN-small after edge probability estimation
● IGN-small approximates spectral GNN arbitrarily well
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Graph Coarsening: Motivation

● Make a small graph out of a large graph while preserving some properties
● Fundamental operation
● Useful for visualization, scientific computing, and other downstream tasks
● Edge sparsification algorithm (Spielman & Teng)
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Agenda & Key Questions

● What properties are we trying to preserve?
○ Spectral property
○ Need to define operators on original and coarse graph (double weighted Laplacian)

● Edge weight optimization
○ Most algorithms do not optimize edge weights
○ Observation: optimizing edge weights brings significant improvements

● How to assign edge weights (GNN)
○ Subgraph regression
○ Good generalization
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Graph Coarsening

● You can not preserve everything in general. So what properties are you 
considering?

● Spectral property! 

● Define projection/lift operator; operator of interest; and their properties
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Laplace Operator

● Laplacian on graphs: 𝐿 = 𝐷 −𝑊
● Normalized Laplacian: ℒ = 𝐷8#/,𝐿𝐷8#/,

● Discrete analog of Laplace operator
● Used in spectral thoery, diffusion process, image processing…
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How to Measure the Quality?

● Compare  ℱ(𝒪: , 𝑓) and ℱ 𝒪 ;: , d𝑓

● ℱ can be quadratic form 𝑥!𝐿𝑥 or Rayleigh quotient <
%= <
<%<

● 𝒪: , 𝒪 ;: are the Laplace operators
● 𝑓 is graph signal such as the eigenvector of graph Laplacian

28



Example
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Invariants under Lift
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Key Observation

● Existing coarsening algorithm does not optimize for edge weight
● Theory: iterative algorithm with convergence property 
● Practice: nearly identical eigenvalues alignment after optimization
● So let’s learn the edge weight

○ cvx: slow and does not generalize
○ neural network: suboptimal but generalize
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Graph cOarsening RefinemEnt Network (GOREN)
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Model Details

● Simple feature based on node degree 
● Graph Isomorphism Network (GIN)
● Generic optimization (Adam with constant learning rate)
● No bells and whistles
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Experiment: Proof of Concept
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Experiments

● Extensive experiments on synthetic graphs and real networks
● Synthetic graphs from common generative models
● Real networks: shape meshes; citation networks; largest one has 89k nodes
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Experiment: Generalization

● Generalize to graph from same generative model
● Train on small subgraph, generalize to much large (25x) graphs
● Works for different objective functions
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Experiments: non-differentiable objective

● The eigenvalue alignment is non-differentiable w.r.t weights
● Use Rayleigh quotient as a proxy
● More challenging
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Generative Coarse-Graining of Molecular Conformations

● Coarse-Graining: speed up molecule dynamics (MD) simulation 
● Generate novel molecule configurations
● Super resolution for geometric graphs
● Rotation equivariant & handle vector (type 1) features
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Framework

● Variational autoencoder framework 
● Fix coarse graining map
● O(3) equivariant graph encoder & decoder
● Test on 2 systems: alanine dipeptide and chignolin
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Results
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Results
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Future Directions

● Characterize expressive power of IGN-small
● Can IGN converges after edge smoothing?
● Investigating the convergence of GNN in the manifold setting
● Hardness result of learning combinatorial optimization with GNN
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Thank you!
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