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Graphs are everywhere
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Graph Neural Network
● Generalize CNN to graphs
● Permutation equivariant/invariant 
● Handles rich node/edge scalar/vector/high-order tensor features
● Train on small graphs, generalize to large graphs
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Local vs. Global GNN

● Message Passing Neural Network (MPNN) mix features locally
● GIN, GCN, GraphSage, GAT….
● over-squashing, over-smoothing, limited expressive power

● To go from 1-WL to higher WL, one needs to go high-order/global
● Is Graph Transformer the way to go? 
● Invariant Graph Network (𝑘-IGN) serves as a bridge to connect local and 

global GNN

Equivariant Subgraph Aggregation Networks ICLR 2022 Spotlight A Note on Over-Smoothing for Graph Neural Networks. ICML workshop 2020
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My research in GNN
Theory
● Expressive power of GNN ICLR 2022
● Over-smoothing for GNN ICML 2020 workshop
● Convergence of IGN ICML 2022
● Connection between MPNN and GT ICML 2023
Application

● Graph Coarsening with neural networks ICLR 2021
● Generative coarse-graining of molecular conformations ICML 2022
● DeepSets for high-entropy alloys npj Computational Materials
● SO(3) equivariant network for tensor regression IJMCE 

property prediction

theory of local GNN

theory of global GNN

coarsening & 
de-coarsening
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Agenda
● Intro & research overview (10 min) ✅
● Convergence of Invariant Graph Network ICML 2022 (18 min)
● On the connection between MPNN and Graph Transformer 
     (15 min) ICML 2023
● Graph coarsening with neural networks ICLR 2021 (5 min)
● Conclusion (3 min)
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Convergence of Invariant Graph 
Networks

Chen Cai & Yusu Wang
ICML 2022



Motivation

● What is convergence? 
○ A sequence of graphs are sampled from the same model
○ Send each graph to the same GNN
○ Does output (a sequence of vectors) converge?

● Convergence is easier to tackle than generalization
○ Variability is controlled & limited 

0.287          0.292                 0.298         0.3 

GNN GNN GNN C-GNN
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Setup & existing work 

● Model
○ graphon 𝑊: 0,1 ! → [0,1]
○ edge probability discrete model
○ edge weight continuous model

● Previous work studied spectral GNN, which has limited expressive power
● What about more powerful GNN?

Study the Convergence of Invariant Graph Networks (IGN)

Keriven et al. "Convergence and stability of graph convolutional networks on large random graphs.” NeurIPS 2020.
Ruiz et al. "Graphon neural networks and the transferability of graph neural networks." NeurIPS 2020

Part II: Convergence of Invariant Graph Networks
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Invariant Graph Network (IGN)

● 𝐹 = ℎ ∘ 𝐿 ! ∘ 𝜎 ⋅⋅⋅	∘ 𝜎 ∘ 𝐿(#) needs to be permutation equivaraint 
● Characterize linear permutation equivariant functions
● 15 basis elements for ℝ%! → ℝ%!

● Generalization of DeepSets

Maron, Haggai, et al. "Invariant and equivariant graph networks." ICLR 2019
Zaheer, Manzil, et al. "Deep sets." NeurIPS 2017

Theorem [Maron et al 2018]: The space of linear permutation 
equivariant functions ℝ%" → ℝ%# is of dimension 𝑏𝑒𝑙𝑙 𝑙 + 𝑚 ,	number of 
partitions of set {1, 2, … , 𝑙 + 𝑚}.

Part II: Convergence of Invariant Graph Networks
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Invariant Graph Network (IGN)
● Depending on largest intermediate tensor order, we have 2-IGN and 𝑘-IGN
● 2-IGN:

○ Can approximate Message Passing neural network (MPNN)
○ At least as powerful as 1-WL (Weisfeiler-Leman Algorithm)

● 𝑘-IGN
○ Not practical but a good mental model for GNN expressivity research
○ As 𝑘 increase, 𝑘-IGN reaches universality

Maron, Haggai, et al. "Invariant and equivariant graph networks." ICLR 2019
Maron, Haggai, et al. "Provably powerful graph networks. NeurIPS 2019

Part II: Convergence of Invariant Graph Networks
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Convergence for 2-IGN
● Analysis of basis elements one by one
● Spectral norm of some elements is unbounded
● Introducing “partition norm”

Definition (Partition-norm): The partition-norm of 2-tensor 𝐴 ∈ ℝ%! is defined

as 𝐴 &% ≔
'()*∗ +

%
, + !

%
. The continuous analog of the partition-norm for

graphon 𝑊 ∈ 𝒲 is defined as 𝑊 &% ≔ ∫𝑊, 𝑢, 𝑢 𝑑𝑢, ∫𝑊, 𝑢, 𝑣 𝑑𝑢𝑑𝑣

∀𝑖 ∈ 15 , 𝑖𝑓 𝐴 &% ≤ 𝜖, 𝜖 , 𝑡ℎ𝑒𝑛 𝑇( 𝐴 &% ≤ 𝜖, 𝜖
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Space of linear permutation equivariant maps
● from 𝑙-tensor to 𝑚-tensor
● dimension is 𝑏𝑒𝑙𝑙(𝑙 + 𝑚)

Part II: Convergence of Invariant Graph Networks
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Edge Weight Continuous Model

𝑐𝐼𝐺𝑁 𝑊% → 𝑐𝐼𝐺𝑁 𝑊
𝑐𝐼𝐺𝑁(P𝑊%) → 𝑐𝐼𝐺𝑁(𝑊) in probability

Part II: Convergence of Invariant Graph Networks
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Edge Probability Discrete Model

𝑅𝑀𝑆𝐸!(𝜙" 𝑊 , 𝜙# 𝐴$ )

● 𝑈 is the sampling data
● 𝑆- is the sampling operator
● Comparison in the discrete space
● More natural and more challenging

𝑅𝑀𝑆𝐸! 𝑓, 𝑥 ≔ 𝑆"𝑓 −
𝑥
𝑛 #

= 𝑛$#,
%&'

(

,
)&'

(

𝑓 𝑢%, 𝑢) − 𝑥 𝑖, 𝑗
# */#
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Negative result

Informal Theorem (negative result) [Cai & Wang, 2022]
Under mild assumption on 𝑊, given any IGN architecture, there exists a set of
parameter 𝜃 such that the convergence of IGN to cIGN is not possible, i.e.,
𝑅𝑀𝑆𝐸-(𝜙. 𝑊,𝐷𝑖𝑎𝑔 𝑋 , 𝜙/ 𝐴%, 𝐷𝑖𝑎𝑔f(𝑋%) does not converge to 0 as 𝑛 goes
to infinity, where 𝐴% is 0-1 matrix.

Part II: Convergence of Invariant Graph Networks
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Graphon (edge probability) estimation

<latexit sha1_base64="CuDNSW9f3LzOu7z2pDNT88iDyHQ="></latexit>

Does RMSEU (�c(W ),�d(\Wn⇥n))converges to 0 in probability?

<latexit sha1_base64="sBiOlFQKbquPVjU3dYPccbwE9ms=">AAACAnicbVBNS8NAEN34WetX1JN4WSyCp5JIUY9FLx4r2A9oQthst+3SzSbsTpQSghf/ihcPinj1V3jz37htc9DWBwOP92aYmRcmgmtwnG9raXlldW29tFHe3Nre2bX39ls6ThVlTRqLWHVCopngkjWBg2CdRDEShYK1w9H1xG/fM6V5LO9gnDA/IgPJ+5wSMFJgH3oPvMeGBLJ2kEnsAY+YxhLneWBXnKozBV4kbkEqqEAjsL+8XkzTiEmggmjddZ0E/Iwo4FSwvOylmiWEjsiAdQ2VxGzys+kLOT4xSg/3Y2VKAp6qvycyEmk9jkLTGREY6nlvIv7ndVPoX/oZl0kKTNLZon4qMMR4kgfuccUoiLEhhCpubsV0SBShYFIrmxDc+ZcXSeus6p5Xa7e1Sv2qiKOEjtAxOkUuukB1dIMaqIkoekTP6BW9WU/Wi/Vufcxal6xi5gD9gfX5AzThl1A=</latexit>

\Wn⇥n
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Convergence after edge smoothing

● Proof leverages
○ Statistical guarantee of edge smoothing 
○ Property of basis elements of 𝑘-IGN 
○ Standard algebraic manipulation 
○ Property of sampling operator

Informal Theorem (convergence of IGN-small) [Cai & Wang, 2022]
Assume AS 1-4, and let g𝑊%×% be the estimated edge probability that satisfies 
#
%
𝑊%×% − g𝑊%×% ,

converges to 0 in probability. Let Φ. , Φ/ be continuous and 

discrete IGN-small. Then 𝑅𝑀𝑆𝐸-(𝜙. 𝑊,𝐷𝑖𝑎𝑔 𝑋 , 𝜙/ g𝑊%×%, 𝐷𝑖𝑎𝑔(P𝑋%)
converges to 0 in probability.

Part II: Convergence of Invariant Graph Networks
19



IGN-small
● A subset of IGN

Definition (IGN-small): Let f𝑊%,2 be a graphon with ``chessboard pattern’’, i.e., 
it is a piecewise constant graphon where each block is of the same size. 
Similarly, define P𝑋%,2as the 1D analog. IGN-small denotes a subset of IGN 
that satisfies 𝑆%𝜙. f𝑊%,2 , 𝐷𝑖𝑎𝑔 P𝑋%,2 = 𝜙/𝑆% f𝑊%,2 , 𝐷𝑖𝑎𝑔 P𝑋%,2

Part II: Convergence of Invariant Graph Networks
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IGN-small can approximate SGNN arbitrarily well

● Spectral GNN (SGNN) 𝑧3
(45#) = 𝜌(∑(6#

/" ℎ(3
(4) 𝐿 𝑧(

4 + 𝑏3
4 1%)

● Main GNN considered in the convergence literature
● Proof idea: 

○ It suffices to approximate 𝐿𝑥
○ 2-IGN basis elements can compute 𝐿 and do matrix-vector multiplication

Part II: Convergence of Invariant Graph Networks
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Experiments

Part II: Convergence of Invariant Graph Networks
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Summary
A novel interpretation of basis of the space of equivariant maps in 𝑘-IGN

Edge weight continuous model:

● Convergence of 2-IGN and 𝑘-IGN
● For both deterministic and random sampling

Edge probability discrete model

● Negative result in general
● Convergence of IGN-small after graphon estimation
● IGN-small approximates spectral GNN arbitrarily well

Part II: Convergence of Invariant Graph Networks
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On the Connection Between MPNN 
and Graph Transformer
Chen Cai, Truong Son Hy, Rose Yu, Yusu Wang

ICML 2023
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Background
● MPNN: Mixing node features locally

○ GCN, GAT, GIN….
○ Limited expressive power, over-squashing, over-smoothing….
○ Local approach

● GT: tokenize nodes and feed into Transformer 
○ Simple; gaining attraction recently
○ Relies on efficient transformer literature to scale up GT
○ Global approach

● What’s the connection between such two paradigms?  

Part III: On the Connection Between MPNN and Graph Transformer
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Motivation
● Long range modeling

○ Congestion prediction in chip design, large molecules…
○ Shortcuts, coarsening, graph transformer

● Pure Transformers are powerful graph learners 
○ GT with specific positional embedding can approximate 2-IGN, which is at least as expressive 

as MPNN
○ Proof idea: show that GT can approximate all permutation equivariant layers in IGN

● This paper: draw the inverse connection
○ Can we approximate GT with MPNN? 

Kim, Jinwoo, et al. "Pure transformers are powerful graph learners."  NeurIPS 2022.Part III: On the Connection Between MPNN and Graph Transformer
26



MPNN + Virtual Node (VN)
● Add a virtual node + heterogeneous message passing 
● Trivially reduce the diameter to 2 
● Proposed in the early days of GNN; commonly used in practice and improves 

over MPNN
● Very little theoretical understanding
● This paper: show simple MPNN + VN can approximate GT under various 

width/depth settings

Part III: On the Connection Between MPNN and Graph Transformer
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Transformer
● A sequence of Self-Attention layer
● 𝐿 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑋𝑊7 𝑋𝑊8

! 𝑋𝑊9

● 𝑂 𝑛,  complexity
● Vast literature on efficient/linear transformers
● Behind the success of AF2, LLM, StableDiffusion…

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Part III: On the Connection Between MPNN and Graph Transformer
28



Summary of theoretical results 

depth

width

Part III: On the Connection Between MPNN and Graph Transformer
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Summary of theoretical results 

Part III: On the Connection Between MPNN and Graph Transformer
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Summary of theoretical results 

Part III: On the Connection Between MPNN and Graph Transformer

depth

width
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Summary of theoretical results 

Part III: On the Connection Between MPNN and Graph Transformer

depth

width
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MPNN + VN w/ constant width & depth
● Recall SA layer has the following form

● where kernel 
● Plug in

VN in disguise

Part III: On the Connection Between MPNN and Graph Transformer
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MPNN + VN w/ constant width & depth
● Performer and Linear Transformer fall into such category
● Performer is used SOTA model GraphGPS
● They can be arbitrarily approximated by MPNN + VN
● There are many other ways to build linear transformer

○ Coarsening, shortcuts… 
○ Unlikely MPNN + VN can approximate all of them

Choromanski et al. "Rethinking attention with performers." ICLR 2021
Katharopoulos et al. "Transformers are rnns: Fast autoregressive transformers with linear attention.” ICML 2020.
Rampášek et al. "Recipe for a general, powerful, scalable graph transformer." NeurIPS 2022

Part III: On the Connection Between MPNN and Graph Transformer
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Wide MPNN + VN
● Key observation: MPNN + VN can simulate equivariant DeepSets

● DeepSets layer: 𝐿/: = 𝑋𝐴 + #
%
11!𝑋𝐵 + 1𝐶!

● DeepSets is permutational equivariant universal
● Therefore, MPNN + VN is also permutational equivariant universal 
● Therefore, MPNN + VN can approximate Transformer/SA layer
● Drawback: upper bound on width is 𝑂(𝑛/)

Segol, Nimrod, and Yaron Lipman. "On universal equivariant set networks." ICLR 2020

Part III: On the Connection Between MPNN and Graph Transformer
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Deep MPNN + VN
● Need strong assumption on node features
● VN approximately selects (using attention) one node feature per iteration
● Do some computation and send message back to all nodes
● Repeat 𝑛 rounds
● Assumption can be relaxed by allowing a more powerful attention mechanism 

(i.e. GATv2) in VN

Brody, Shaked, Uri Alon, and Eran Yahav. "How attentive are graph attention networks?.”  ICLR 2022

Part III: On the Connection Between MPNN and Graph Transformer
36



Exp1: MPNN + VN outperforms GT
● On Long Range Graph Benchmark (LRGB), it is observed that GT 

significantly outperforms MPNN
● We add VN and observe that MPNN + VN performs even better than GT

Dwivedi, Vijay Prakash, et al. "Long range graph benchmark." NeurIPS 2022

Part III: On the Connection Between MPNN and Graph Transformer
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Exp2: Stronger MPNN + VN implementation

Part III: On the Connection Between MPNN and Graph Transformer
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Exp3: Forecasting sea surface temperature 
● Discretize regions of interest as graphs
● Run MPNN + VN / GT for time series forecasting
● Observe MPNN + VN improves MPNN, and outperforms Linear Transformer
● Still fall behind TF-Net, a SOTA method for spatiotemporal forecasting

Wang, Rui, et al. "Towards physics-informed deep learning for turbulent flow prediction.” KDD 2020.

Part III: On the Connection Between MPNN and Graph Transformer
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Graph Coarsening with Neural 
Networks

Chen Cai, Dingkang Wang, Yusu Wang
ICLR 2021



Motivation
● Make a small graph out of a large graph while preserving some properties
● Fundamental operation
● Sister problem of edge sparsification by Spielman & Teng
● Useful for visualization, scientific computation, and other downstream tasks

Part IV: Graph Coarsening with Neural Networks
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Key questions
● What properties are we trying to preserve?

○ Spectral property
○ Need to define operators, projection and lift map

● Edge weight optimization
○ Most algorithms do not optimize edge weights
○ Observation: optimizing edge weights brings significant improvements

● How to assign edge weights (GNN)
○ Subgraph regression
○ Good generalization

Part IV: Graph Coarsening with Neural Networks
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Graph coarsening
● We can not preserve everything in general. So what properties are we 

considering?
● Spectral property! 

● Define projection/lift operator and their properties

Part IV: Graph Coarsening with Neural Networks
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Invariants under lift operator

Part IV: Graph Coarsening with Neural Networks
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● Existing coarsening algorithm does not optimize for edge weight
● Theory: iterative algorithm with convergence property 
● Practice: nearly identical eigenvalues alignment after optimization
● So let’s learn the edge weight

○ cvx. slow and does not generalize
○ neural network: suboptimal but generalize

Key observation

Part IV: Graph Coarsening with Neural Networks
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Graph cOarsening RefinemEnt Network (GOREN)

Part IV: Graph Coarsening with Neural Networks
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Experiments
● Extensive experiments on synthetic graphs and real networks
● Synthetic graphs from common generative models
● Real networks: shape meshes; citation networks; largest one has 89k nodes

Part IV: Graph Coarsening with Neural Networks
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Conclusion
● Local-to-Global Perspectives on GNN
● Two works on theory of global GNN

○ Convergence of IGN (global GNN)
○ Connection between MPNN and GT (connection)

● One applied work: 
○ Graph Coarsening with Neural Networks local GNN)

Conclusion
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Future direction
● Expressivity research needs to go beyond connectivity and model 3d 

positions & node features
● Harder question: optimization and generalization of GNN
● Equivariant GNN + Diffusion for conditional generation of structured data
● Geometric/topological tools to understand the regularity of molecule/material 

spaces & hardness of learning/sampling

Conclusion
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Thank You! 
Questions? 
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