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Graphs are everywhere

Part I: Introduction



Graph Neural Network

Generalize CNN to graphs

Permutation equivariant/invariant f(PX) = Pf(X)/f(PX) = f(X)
Handles rich node/edge scalar/vector/high-order tensor features
Train on small graphs, generalize to large graphs

Geoffrey Hinton
¢ @geoffreyhinton

Equivariance rules!

& Andrea Tagliasacchi @ Vancouver @taiyasaki - Dec 10, 2021
¥ !¢ ¢ ) Introducing Neural Descriptor Fields (NDF)

That's right, we teach a robot to manipulate unseen objects, and unseen poses
from just 10 examples

Wanna know more? See this thread twitter.com/vincesitzmannj/... LAYERS

Show this thread
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Local vs. Global GNN

e Message Passing Neural Network (MPNN) mix features locally
® GIN, GCN, GraphSage, GAT....
® over-squashing, over-smoothing, limited expressive power
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My research in GNN

Theory

e Expressive power of GNN ICLR 2022
e Over-smoothing for GNN ICML 2020 worksho

theory of local GNN

e Convergence of IGN ICML 2022 }theo of alobal GNN

e Connection between MPNN and GT ICML 2023 vore

Application

e Graph Coarsening with neural networks ICLR 2021 coarsening &

e Generative coarse-graining of molecular conformations ICML 2022 de-coarsening
e DeepSets for high-entropy alloys npj Computational Materials

rt dicti
e SO(3) equivariant network for tensor regression |[JMCE } property prediction
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Agenda

e Intro & research overview (10 min)
Convergence of Invariant Graph Network ICML 2022 (18 min)
e On the connection between MPNN and Graph Transformer
(15 min) ICML 2023
e Graph coarsening with neural networks ICLR 2021 (5 min)
e Conclusion (3 min)

DeepSets

nvariant Graph Network (IGN) m MPNN (GCN, GAT,

Graph Transformer GraphSage...) + Virtual Node

Invariant Graph Network (IGN) 6
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Convergence of Invariant Graph
Networks

Chen Cai & Yusu Wang

ICML 2022
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Motivation

e What is convergence?
o A sequence of graphs are sampled from the same model
o Send each graph to the same GNN
o Does output (a sequence of vectors) converge?

e Convergence is easier to tackle than generalization
o Variability is controlled & limited
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Setup & existing work

X3 XXX X5 X

e Model . o ©
o graphon W:[0,1]*> - [0,1] . ° & ©
o edge probability discrete model . o ®
o edge weight continuous model Connect nodes 3 an 4 with probabity Wi, ).

e Previous work studied spectral GNN, which has limited expressive power

e \What about more powerful GNN? 72

Study the Convergence of Invariant Graph Networks (IGN)

Keriven et al. "Convergence and stability of graph convolutional networks on large random graphs.” NeurlPS 2020.
Ruiz et al. "Graphon neural networks and the transferability of graph neural networks." NeurlPS 2020 9
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Invariant Graph Network (IGN)

o F=hoL(Mog-..0goLM needs to be permutation equivaraint
e Characterize linear permutation equivariant functions

e 15 basis elements for R** - R
e Generalization of DeepSets

Theorem [Maron et al 2018]: The space of linear permutation

equivariant functions R™ — R™™ is of dimension bell(l + m), number of
partitions of set {1, 2, ..., + m}.

Maron, Haggai, et al. "Invariant and equivariant graph networks." ICLR 2019
Zaheer, Manzil, et al. "Deep sets." NeurlPS 2017 10
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Invariant Graph Network (IGN)

e Depending on largest intermediate tensor order, we have 2-IGN and k-IGN
o 2-IGN:

o Can approximate Message Passing neural network (MPNN)
o Atleast as powerful as 1-WL (Weisfeiler-Leman Algorithm)

o k-IGN

o Not practical but a good mental model for GNN expressivity research
o As k increase, k-IGN reaches universality

O(n*)-IGN
O Quad 2-I1 Poly 2-IGN
MPNN (GCN, GAT, " :} é IGN (Invariant Graph *
GraphSage...) + Virtual Node Networks) & Deepsets
< 3-WL « P< ...
i 2-WL-folklore
Refinement
Maron, Haggai, et al. "Invariant and equivariant graph networks." ICLR 2019
Maron, Haggai, et al. "Provably powerful graph networks. NeurlPS 2019 11
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Convergence for 2-IGN

e Analysis of basis elements one by one
Spectral norm of some elements is unbounded
e Introducing “partition norm”

Definition (Partition-norm): The partition-norm of 2-tensor A € R™ is defined
. (Diag™(4) llAll
as [|Allpn = (*2%2,

graphon W € W is defined as [[W]|,,,, == (\/f W?2(u, u)du,\/f W?2(u, v)dudv)

). The continuous analog of the partition-norm for

vi € [15],if |All,, < (€, €), then [|T;(Allpn < (€,€)

13
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Space of linear permutation equivariant maps

e from [-tensor to m-tensor f{;}}

e dimension is bell(l + m) &

{{1,2},{3,6},{4},{5}}

{1
=T {4}
R {6}
{3} [1,2,3] -

S1={{1,2}}US> ={{3,6}}US3 = {ﬁl}, {5}}

Only has input axis ) has both ) only has output axis
input and output axis 14
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Edge Weight Continuous Model

TRR

cIGN(W,,) - CIGN(W)
cIGN(W,)) = cIGN (W) in probability

|14
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Edge Probability Discrete Model

RMSEU (¢c (W): ¢d (An))

X3 X4 X1 X2 X5 X

e U is the sampling data o ®

e Sy is the sampling operator ®
e Comparison in the discrete space ® _ ®

e More natural and more challenging =

Connect nodes 3 and 4 with probability W(xs, X4).

n

n » 1/2
RMSEY(F, ) = [[suf == = (n‘2 ZO Dl (i) = x| )

7=0
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Negative result

Informal Theorem (negative result) [Cai & Wang, 2022]
Under mild assumption on W, given any IGN architecture, there exists a set of

parameter 0 such that the convergence of IGN to cIGN is not possible, i.e.,

RMSEy (¢.([W, Diag(X)]), ¢q ([An, Diag(X,)]) does not converge to 0 as n goes
to infinity, where 4,, is 0-1 matrix.

17
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%% Wi xn

Does RMSEy (®.(W), @d(m))converges to 0 in probability?

18
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Convergence after edge smoothing

Informal Theorem (convergence of IGN-small) [Cai & Wang, 2022]
Assume AS 1-4, and let .., be the estimated edge probability that satisfies

%“an - ann||2 converges to 0 in probability. Let ®_, &, be continuous and

discrete IGN-small. Then RMSE; (¢, ([W, Diag(X)]), ¢a ([Whxn, Diag(X,)])
converges to 0 in probability.

e Proof leverages RMSEy (®(W), 84(Wnxn))
o Statistical guarantee of edge smoothing = |Sy®. (W) — %%(ann)”

o Property of basis elements of k-IGN
o Standard algebraic manipulation
o Property of sampling operator

< HSUq)c(W) - SU(I)C(Wn) |l T 1|SU¢C(WH) - q)dSU (Wn) u
First term: dggrization error Second term?sralmpling error

— 1 .
+ ”(I)dSU(Wn) - %‘pd(ann)”

N J

Third term: estimation error 19
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|GN-small

e A subset of IGN

Definition (IGN-small): Let W, ; be a graphon with **chessboard pattern”, i.e.,
it is a piecewise constant graphon where each block is of the same size.
Similarly, define X, zas the 1D analog. IGN-small denotes a subset of IGN

that satisfies S,¢.([Wy g Diag(Xnz)]) = ¢aSn([Wr g Diag(X,.z)])

L]

© © (d) (@
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IGN-small can approximate SGNN arbitrarily well

e Spectral GNN (SGNN) z' " = p(B, ht (L)z{” + bV1,)
e Main GNN considered |n the convergence literature

e Proofidea:

o It suffices to approximate Lx
o 2-IGN basis elements can compute L and do matrix-vector multiplication

M

use MLP to mix channels

to approximate linear equivaraint layers:

pointwise multiplication copy column average
> to columns

Channel
dimension approximated Mx/n

L.

Node dimension
' 21
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Experiments

Stochastic block model Smooth Graphon (1 piece) Piecewise smooth graphon (3 pieces)

10—Z<
° . ® © ¢ ¢ 0000cses
L ° © © o © ©0o0cooccsesss — e o o oo o . ® o o ¢ 0 oooccccccnn

RS = S e

. . .
e o e ~ ® =3~ £
T Sso ] S 1L P9 Iy
10 S~ e [ ] 10-4 4
S~ 107 4 .
N N
® EW + fixed S ® EW + fixed \‘\\ ® EW + fixed
® EW + random \\\ ¢ EW + random \\\\ ¢® EW + random
104 & EP \\\\ 1075 4 ¢ FEP \\\\ 1075 4 ¢ EP
¢ EP + edge smoothing S ¢ EP + edge smoothing S, ¢ EP + edge smoothing
102 103 10? 103 102
N N N
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Summary

A novel interpretation of basis of the space of equivariant maps in k-IGN
Edge weight continuous model:

e Convergence of 2-IGN and k-IGN
e For both deterministic and random sampling

Edge probability discrete model

e Negative result in general
e Convergence of IGN-small after graphon estimation
e |GN-small approximates spectral GNN arbitrarily well

23
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On the Connection Between MPNN
and Graph Transformer

Chen Cai, Truong Son Hy, Rose Yu, Yusu Wang
ICML 2023

Transformer
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Background

e MPNN: Mixing node features locally
o GCN, GAT, GIN....
o Limited expressive power, over-squashing, over-smoothing....
Local approach
e GT: tokenize nodes and feed into Transformer
o Simple; gaining attraction recently
o Relies on efficient transformer literature to scale up GT
o Global approach

e \What’s the connection between such two paradiams?

““““

Transformer

A T

OO000000O0
25
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Motivation

e Long range modeling
o Congestion prediction in chip design, large molecules...
o Shortcuts, coarsening, graph transformer
e Pure Transformers are powerful graph learners
o GT with specific positional embedding can approximate 2-IGN, which is at least as expressive
as MPNN
o Proof idea: show that GT can approximate all permutation equivariant layers in IGN
e This paper: draw the inverse connection
o Can we approximate GT with MPNN?

MPNN (GCN, GAT,

IGN (Invariant Graph

GraphSage...) + Virtual Node <}:| Networks) & Deepsets <}:I Graph Transformer

26
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MPNN + Virtual Node (VN)

e Add a virtual node + heterogeneous message passing
Trivially reduce the diameter to 2

e Proposed in the early days of GNN; commonly used in practice and improves
over MPNN

e \Very little theoretical understanding

e This paper: show simple MPNN + VN can approximate GT under various
width/depth settings @

27
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Transformer

MatMul

e A sequence of Self-Attention layer
o L(X)=softmax(XWy(XW)T)XW,
e 0(n?) complexity
e Vast literature on efficient/linear transformers
e Behind the success of AF2, LLM, StableDiffusion...
Q K V
Vaswani, Ashish, et al. "Attention is all you need.” Advances in neural information processing systems 30 (2017), 28
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Summary of theoretical results

Depth Width  Self-Attention Note

=== Theorem 4.1 O(1) O() Approximate Approximate self attention in Performer (Choromanski et al., 2020)
Theorem 5.5 O() O(nd) Ful Leverage the universality of equivariant DeepSets
Theorem 6.3 O(n 1) Full Explicit construction, strong assumption on X

( 1) Full Explicit construction, more relaxed (but still strong) assumption on X

depth

tput layer
input layer

v hidden layer 1 hidden layer 2

A

\4

WA
O

width

o
)
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Summary of theoretical results

Depth Width  Self-Attention Note

Theorem 4.1 O(1) O() Approximate Approximate self attention in Performer (Choromanski et al., 2020)
=== Theorem 5.5 O() O(nd) Ful Leverage the universality of equivariant DeepSets
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Summary of theoretical results

Depth Width  Self-Attention Note

Theorem 4.1 O(1) O() Approximate Approximate self attention in Performer (Choromanski et al., 2020)
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Summary of theoretical results

Depth Width  Self-Attention Note
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MPNN + VN w/ constant width & depth

e Recall SA layer has the following form

e (WOD, WOz -
20D = ; Zg_l(ﬁ ngmg”, ng)zg)) -(W‘(,)wg- ))
o where kernel K(x,Y) = (2(x), 2(y))y ~ é(x)" d(y)
e Plugin . .
2D =30 ¢(a:) ¢(k;)
' j=1 ZZ=1 ¢(Qi)T ¢ (k) !
(¢ @)" " VN in disguise

¢ (a:)" '

33
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MPNN + VN w/ constant width & depth

Performer and Linear Transformer fall into such category
Performer is used SOTA model GraphGPS
They can be arbitrarily approximated by MPNN + VN

There are many other ways to build linear transformer

o Coarsening, shortcuts...
o Unlikely MPNN + VN can approximate all of them

i TokenLearner
LerceieN Byooeta, 2021
{ranstomene Nystromformer
L
Recurrehce Memory / Memory

i Compressed
compressve|  DOWNSampling - STEEE

Transformer/  get Transformer
(Rae etal, 2018) (Lee etal, 2019)

i Clusterformer
Z Rouftmg Wang et l. 2020)
B ransformer
Funnel Fool:;\egflogn?r (Royetal, 2020) Reformer

(Kiaev et a, . 2020)

Performer ‘ Transformer ~ @henoet
(Ghoromanskictal. . 2020) Oai etal,2020)

Low-Rank Transformer
(Winata etal 2020)

Longformer win Clustered Attenti
(Beltagy etal, 2020) T:ﬁ.{'ﬂ?{m,ﬂ P ainkhom uswe;fmwmen:\ ion
Low Rank / Long Short Transformer
] _ oyt 2520)

Kernels [Transformer|  Fixed/Factorized/

Linformer
(wang et 20208)

Adaptive
Sthesizer Random Patterns Sparse
Random Feature Attention |SY! L Transformer
etz T ransformer Lot WSShard a2
(Qiuetal, 2019) :

Choromanski et al. "Rethinking attention with performers." ICLR 2021

. . . . 1 Linear Sparse
Katharopoulos et al. "Transformers are rnns: Fast autoregressive transformers with linear attention.” ICML 2020. Jransformer RO o= 2= 11200t St P o
L " . " TParman tal, 2018) Product Key
Rampasek et al. "Recipe for a general, powerful, scalable graph transformer." NeurlPS 2022 ol o R ey
bean
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Wide MPNN + VN

e Key observation: MPNN + VN can simulate equivariant DeepSets

DeepSets layer: L% = XA + :—lllTXB +1cT

DeepSets is permutational equivariant universal
Therefore, MPNN + VN is also permutational equivariant universal
Therefore, MPNN + VN can approximate Transformer/SA layer

Drawback: upper bound on width is 0(n%)

MPNN (GCN, GAT,
I R |:{> Deepsets |:{> Graph Transformer

Segol, Nimrod, and Yaron Lipman. "On universal equivariant set networks." ICLR 2020 35
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Deep MPNN + VN

Need strong assumption on node features
VN approximately selects (using attention) one node feature per iteration

Do some computation and send message back to all nodes

Repeat n rounds
Assumption can be relaxed by allowing a more powerful attention mechanism

(i.e. GATV2) in VN

Brody, Shaked, Uri Alon, and Eran Yahav. "How attentive are graph attention networks?.” ICLR 2022 36
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Exp1: MPNN + VN outperforms GT

e On Long Range Graph Benchmark (LRGB), it is observed that GT

significantly outperforms MPNN
e \We add VN and observe that MPNN + VN performs even better than GT

Peptides-func

Peptides-struct

Model # Params.
Test AP before VN Test AP after VN 1 Test MAE before VN Test MAE after VN |

GCN 508k 0.5930+0.0023 0.6623+0.0038 0.3496+0.0013 0.2488-+0.0021
GINE 476k 0.5498+0.0079 0.6346+0.0071 0.3547+0.0045 0.2584+0.0011
GatedGCN 509k 0.5864+0.0077 0.6635+0.0024 0.3420+0.0013 0.2523+0.0016
GatedGCN+RWSE 506k 0.6069+0.0035 0.6685+0.0062 0.3357+0.0006 0.2529+0.0009
Transformer+LapPE 488k 0.6326+0.0126 - 0.252940.0016 -
SAN+LapPE 493k 0.6384+0.0121 - 0.2683+0.0043 -
SAN+RWSE 500k 0.6439+0.0075 - 0.2545+0.0012 -

Dwivedi, Vijay Prakash, et al. "Long range graph benchmark." NeurlPS 2022

Part Ill: On the Connection Between MPNN and Graph Transformer
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Exp2: Stronger MPNN + VN implementation

Table 3: Test performance in graph-level OGB benchmarks (Hu et al., 2020). Shown is the mean + s.d. of 10 runs.

Model ogbg-molhiv ogbg-molpcha ogbhg-ppa oghg-code2
AUROC 1 Avg. Precision 1 Accuracy 1 F1 score 1
GCN-+virtual node 0.7599 + 0.0119  0.2424 4+ 0.0034 0.6857 £ 0.0061  0.1595 + 0.0018
GIN 0.7558 £ U.0140 _ 0.22606 & 0.00Z28 _ U.0892Z £ U.0100 __ U.1495 £ U.0023
| GIN+virtual node 0.7 : 3 i A ;
SAN 0.7785 + 0.2470  0.2765 £ 0.0042 - -
GraphTrans (GCN-Virtual) - 0.2761 + 0.0029 - 0.1830 + 0.0024
K-Subtree SAT - - 0.7522 + 0.0056  0.1937 + 0.0028
GPS 0.7880 + 0.0101  0.2907 £ 0.0028  0.8015 £ 0.0033  0.1894 + 0.0024
MPNN + VN + NoPE 0.7676 + 0.0172  0.2823 4+ 0.0026  0.8055 £+ 0.0038  0.1727 £ 0.0017
MPNN + VN + PE 0.7687 + 0.0136  0.2848 4+ 0.0026  0.8027 £ 0.0026  0.1719 + 0.0013

38
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Exp3: Forecasting sea surface temperature

e Discretize regions of interest as graphs
e Run MPNN + VN / GT for time series forecasting
e Observe MPNN + VN improves MPNN, and outperforms Linear Transformer
e Still fall behind TF-Net, a SOTA method for spatiotemporal forecasting
Table 5: Results of SST prediction.
Model 4 weeks 2 weeks 1 week
MLP 0.3302 0.2710 0.2121
TF-Net 0.2833  0.2036  0.1462
Linear Transformer + LapPE  0.2818  0.2191  0.1610
MPNN 0.2917 0.2281 0.1613
MPNN + VN 0.2806 0.2130 0.1540
Wang, Rui, et al. "Towards physics-informed deep learning for turbulent flow prediction.” KDD 2020. 39
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Graph Coarsening with Neural
Networks

Chen Cai, Dingkang Wang, Yusu Wang

ICLR 2021
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Motivation

Make a small graph out of a large graph while preserving some properties
Fundamental operation

Sister problem of edge sparsification by Spielman & Teng

Useful for visualization, scientific computation, and other downstream tasks

Part IV: Graph Coarsening with Neural Networks



Key questions

e What properties are we trying to preserve?

o Spectral property

o Need to define operators, projection and lift map
e Edge weight optimization

o Most algorithms do not optimize edge weights

o Observation: optimizing edge weights brings significant improvements
e How to assign edge weights (GNN)

o Subgraph regression

o Good generalization

Part IV: Graph Coarsening with Neural Networks



Graph coarsening

e We can not preserve everything in general. So what properties are we
considering?
e Spectral property!

P .
G=2G
U

e Define projection/lift operator and their properties

Part IV: Graph Coarsening with Neural Networks



Invariants under lift operator

Quantity F of interest (Og Projection P  Liftd Og Invariant under U
Quadratic form Q L P I Combinatorial Laplace L Qr(Uz) = Q3 (2)
Rayleigh quotientR L I'~V/2(pH)"  p+rp-1/2 Doubly-weighted Laplace L Ry (UZ) = Rp(2)
Quadratic form Q £  DY?2pD-'Y?2 DY?(Pt)D~'/? Normalized Laplace £ Qc(UZ) = Qz(2)

Part IV: Graph Coarsening with Neural Networks



Key observation

Existing coarsening algorithm does not optimize for edge weight
Theory: iterative algorithm with convergence property

Practice: nearly identical eigenvalues alignment after optimization
So let’s learn the edge weight

minnesota

o cvX. slow and does not generalize — Ge

— Gc.e

o neural network: suboptimal but generalize | -

0 250 500 750 1000 1250
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Graph cOarsening RefinemEnt Network (GOREN)

G G G Cle o)
O o ) oo t 050 |
. ® S RRNG 6% @ 00 o0
OO A GOREN -
OC; ----- o --'O’-: Og O Cw(0,0") = Me(Glgyunr))
0 030801 %® = O - O—®

O\ AL Q Minimize
S A2 B /

8 ® O Loss(Og, Og,) O

Part IV: Graph Coarsening with Neural Networks



Experiments

e Extensive experiments on synthetic graphs and real networks
e Synthetic graphs from common generative models

e Real networks: shape meshes; citation networks; largest one has 89k nodes

Table 3: Loss: quadratic loss. Laplacian: combinatorial Laplacian for both original and coarse

graphs. Each entry x(y) is: z = loss w/o learning, and y = improvement percentage.

Synthetic

Real

Dataset BL Affinity gig;?lrgc gggzy {_éczlcgz;ls\)lar {ﬁ;glh?)ar
BA 044 (16.1%) 0.44 (4.4%) 0.68 (4.3%) 0.61 (3.6%) 0.21(14.1%) 0.18 (72.7%)
ER 036(1.1%) 0.52(0.8%) 035(0.4%) 0.36(02%) 0.18(1.2%) 0.02(7.4%)
GEO 0.71 (87.3%) 0.20 (57.8%) 0.24 31.4%) 0.55(80.4%) 0.10(59.6%) 0.27 (65.0%)
WS 0.45(62.9%) 0.09 (82.1%) 0.09 (60.6%) 0.52 (51.8%) 0.09 (69.9%) 0.11 (84.2%)
CS 0.39 (40.0%) 0.21 (29.8%) 0.17 (26.4%) 0.14 (20.9%) 0.06 (36.9%) 0.0 (59.0%)
Flickr 0.25(10.2%) 0.25(5.0%) 0.19(6.4%) 0.26 (5.6%) 0.11 (11.2%) 0.07 (21.8%)
Physics  0.40 (47.4%) 0.37 (42.4%) 0.32(49.7%) 0.14 (28.0%) 0.15(60.3%) 0.0 (-0.3%)
PubMed 0.30(23.4%) 0.13 (10.5%) 0.12(15.9%) 0.24 (10.8%) 0.06 (11.8%) 0.01 (36.4%)
Shape 0.23 (91.4%) 0.08 (89.8%) 0.06 (82.2%) 0.17 (88.2%) 0.04 (80.2%) 0.08 (79.4%)

48
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Conclusion

e Local-to-Global Perspectives on GNN

e Two works on theory of global GNN

o Convergence of IGN (global GNN)
o Connection between MPNN and GT (connection)

e One applied work:
o Graph Coarsening with Neural Networks local GNN)

DeepSets

nvariant Graph Network (IGN) m MPNN (GCN, GAT,

Graph Transformer GraphSage...) + Virtual Node

Invariant Graph Network (IGN)
49
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Future direction

e Expressivity research needs to go beyond connectivity and model 3d
positions & node features

e Harder question: optimization and generalization of GNN

e Equivariant GNN + Diffusion for conditional generation of structured data

e Geometric/topological tools to understand the regularity of molecule/material
spaces & hardness of learning/sampling

50
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Thank You!
Questions?



