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About Me

e CSE Ph.D. Candidate from UC San Diego, advised
by Yusu Wang

e GNN + Equivariance; before that, | worked on
computational geometry/topology

e Looking for opportunities in Al4Science space

e Currently working at Atomic.ai on geometric deep
learning of RNA structures
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Graph Neural Network

Generalize CNN to graphs

Permutation equivariant/invariant f(PX) = Pf(X)/f(PX) = f(X)
Handles rich node/edge scalar/vector/high-order tensor features
Train on small graphs, generalize to large graphs

\ Geoffrey Hinton
¢ @geoffreyhinton

Equivariance rules!

& Andrea Tagliasacchi @ Vancouver @taiyasaki - Dec 10, 2021
¥ !¢ ¢ ) Introducing Neural Descriptor Fields (NDF)

That's right, we teach a robot to manipulate unseen objects, and unseen poses
from just 10 examples

Wanna know more? See this thread twitter.com/vincesitzmannj/... LAYERS

Show this thread




Local vs. Global GNN

e Message Passing Neural Network (MPNN) mix features locally
® GIN, GCN, GraphSage, GAT....
® over-squashing, over-smoothing, limited expressive power
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My research in GNN

Theory

e Expressive power of GNN /ICLR 2022 } theory of local GNN
e Over-Smoothing for GNN /CML 2020 workshop

e | Convergence of IGN /ICML 2022
. theory of global GNN
e | Connection between MPNN and Graph Transformer

Application

Graph Coarsening with Neural Networks /ICLR 2021 } CG
Generative Coarse-Graining of Molecular Conformations ICML 2022
DeepSets for high-entropy alloys npj Computational Materials
SO(3) equivariant network for tensor regression

} property prediction



Agenda

Intro & research overview (10 min)

Convergence of Invariant Graph Network ICML 2022 (18 min) } ﬂ;egnllngN
oba
On the connection between MPNN and Graph Transformer (10 min) ?

Generative coarse-graining of molecular conformations ICML 2022 (5 min)
Conclusion & future direction (2 min)



Convergence of Invariant
Graph Networks

Chen Cai & Yusu Wang

ICML 2022
{{1,2},{3,6},{4},{5}}
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Motivation

Residual Network ODE Network

e Convergence is easier to tackle than generalization s 5 :

o Variability is controlled & limited Lﬂggh\ | / ‘ t ' Z

- - L P ;
e o €y-Stantn]|
: Neural Tangent Kernel i & 4o, 46,70 :
o Increase depth: Neural ODE e soples) al Pecametes -

o Increase input size? convergence of graph neural network! ' Nl \ \St IF\I
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Setup & existing work

X3 X X1 X2 X5 X

® ®
e Model o ®
o graphon W:[0,1]% - [0,1] o @
o edge probability discrete model

Connect nodes 3 and 4 with probability W(x3, X4).

o edge weight continuous model
e Previous work studied spectral GNN, which has limited expressive power

e \What about more powerful GNN? 7%

Study the Convergence of Invariant Graph Networks (IGN)

Keriven, Nicolas, Alberto Bietti, and Samuel Vaiter. "Convergence and stability of graph convolutional networks on large random graphs.” NeurlPS 2020. 10
Ruiz, Luana, Luiz Chamon, and Alejandro Ribeiro. "Graphon neural networks and the transferability of graph neural networks." NeurlPS 2020



Invariant Graph Network (IGN)

o F=hoL(Mog-..0goLM needs to be permutation equivaraint

e Characterize linear permutation equivariant functions

e 15 basis elements for R** - R

e Generalization of DeepSets

e 3D Steerable CNN/TFN/SE3-transformer is the analog of IGN for SO(3)

Theorem [Maron et al 2018]: The space of linear permutation

equivariant functions R™ — R™™ is of dimension bell(l + m), number of
partitions of set {1, 2, ..., + m}.

Maron, Haggai, et al. "Invariant and equivariant graph networks." ICLR 2019
Zaheer, Manzil, et al. "Deep sets." NeurlPS 2017
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Invariant Graph Network (IGN)

e Depending on largest intermediate tensor order, we have 2-IGN and k-IGN

o 2-IGN:

o Can approximate Message Passing neural network (MPNN)
o At least as powerful as 1-WL (Weisfeiler-Leman Algorithm)

o k-IGN
o Not practical but a good mental model for GNN expressivity research
o As k increase, k-IGN reaches universality

on*)-IGN
olv 2-IGN

GraphSage, A DeepSets
GAT- l= 2-WL-folklore

Refinement

Maron, Haggai, et al. "Invariant and equivariant graph networks." ICLR 2019
Maron, Haggai, et al. "Provably powerful graph networks. NeurlPS 2019
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2-IGN

Analysis of basis elements one by one
Spectral norm of some elements is unbounded
Introducing “partition norm”

Definition (Partition-norm): The partition-norm of 2-tensor A € R™ is defined

(Diag*(A) I1All2
v ' on

graphon W € W is defined as [[W]|,,,, == (\/f W?2(u, u)du,\/f W?2(u, v)dudv)

as |[All,, =

). The continuous analog of the partition-norm for

Vi € [15],if [|Allpn < (€,€), then [|T;(A)lpn < (€,€)
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Space of linear permutation equivariant maps

{1}

e from [-tensor to m-tensor (o

e dimension is bell(l + m) o

{{1,2},{3,6},{4},{5}}

{4}

ld?s}

{6}

S1= {121V S = {{3,6}} USs = {4}, {(5}}

Only has input axis has both ] only has output axis
input and output axis




Edge Weight Continuous Model

K ! .
W, W

cIGN(W,,) - cIGN(W)
cIGN(W,)) = cIGN (W) in probability

16



Edge Probability Discrete Model

RMSEU (¢c (W): ¢d (An))

X3 X4 X1 X2 X5 X

U is the sampling data

Sy is the sampling operator
Comparison in the discrete space
More natural and more challenging

@

)

®

/)
o
o9

Connect nodes 3 and 4 with probability W(xs, X4).

n

n o\ 1/2
RMSEy(f,%) = [|suf ~=]| = (n—z ZO DIl ) - x| )

=0

®
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Negative result

Informal Theorem (negative result) [Cai & Wang, 2022]
Under mild assumption on W, given any IGN architecture, there exists a set of

parameter 0 such that the convergence of IGN to cIGN is not possible, i.e.,

RMSEy (¢.([W, Diag(X)]), ¢q ([An, Diag(X,)]) does not converge to 0 as n goes
to infinity, where A,, is 0-1 matrix.

18



|14

Does RMSEy(®.(W), ®4(W,,xn))converges to 0 in probability?

19



Convergence after edge smoothing

Informal Theorem (convergence of IGN-small) [Cai & Wang, 2022]
Assume AS 1-4, and let .., be the estimated edge probability that satisfies

%“ann — ann||2 converges to 0 in probability. Let &, &, be continuous and

discrete IGN-small. Then RMSE (¢.([W, Diag(X)]), ¢a ([Wyxn, Diag(X,)])

converges to 0 in probability.

e Proof leverages

(@)

(@)
(@)
(@)

Statistical guarantee of edge smoothing
Property of basis elements of k-IGN
Standard algebraic manipulation
Property of sampling operator

RMSEy (@c(W), @a(Wnxn))

— | Sy®u(W) — %%(ann

< USUq)c(W) - SU(I)C(WTL) |l o 1|SU¢)C(WH) - (I)dSU (Wn) u
First term: dggrization error Second term?sralmpling error

— 1 .
+ ”(I)dSU(Wn) - ﬁ‘pd(ann)”

N J
-~

Third term: estimation error 20




|GN-small

e A subset of IGN

Definition (IGN-small): Let W,, ; be a graphon with “*chessboard pattern”, i.e.,
it is a piecewise constant graphon where each block is of the same size.
Similarly, define X,, zas the 1D analog. IGN-small denotes a subset of IGN

that satisfies S, @, ([Wy g, Diag(X,r)]) = ¢aSn([Wr g Diag(Xng)])

(b)

(d) (e)

21



IGN-small can approximate SGNN arbitrarily well

e Spectral GNN (SGNN) z' " = p(B, ht (L)z{” + bV1,)
e Main GNN considered |n the convergence literature

e Proofidea:

o It suffice to approximate Lx
o 2-IGN basis elements can compute L and do matrix-vector multiplication

approximated Mx/n

22



Error

Experiments

Stochastic block model

10—5 4

® EW + fixed Sso
¢ EW + random \\\
® EP N
& EP + edge smoothing SN
102 103
N

Error

Smooth Graphon (1 piece)

S ® o1k
Ssel e oo ~f
1074 5 RN
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Error

Piecewise smooth graphon (3 pieces)
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Summary

A novel interpretation of basis of the space of equivariant maps in k-IGN
Edge weight continuous model:

e Convergence of 2-IGN and k-IGN
e For both deterministic and random sampling

Edge probability discrete model

e Negative result in general
e Convergence of IGN-small after graphon estimation
e |GN-small approximates spectral GNN arbitrarily well

24



On the Connection Between MPNN
and Graph Transformer

Chen Cai, Truong Son Hy, Rose Yu, Yusu Wang
under submission

Transformer

St

O Q0000

25



Motivation

e MPNN: Mixing node features locally
o GCN, GAT, GIN....
o Limited expressive power, over-squashing, over-smoothing....
Local approach
e GT: tokenize nodes and feed into Transformer

o Simple; gaining attraction recently
o Relies on efficient transformer literature to scale up GT
o Global approach

e \What's the connection between such two paradigms?

AN Transformer

| |
SNy
O

Q0000000
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Motivation

e Long range modeling
o Congestion prediction in chip design, large molecules...
o Shortcuts, coarsening, graph transformer
e Pure Transformers are powerful graph learners
o GT with specific positional embedding can approximate 2-IGN, which is at least as expressive
as MPNN
o Proof idea: show that GT can approximate all permutation equivariant layers in IGN
e This paper: draw the inverse connection
o Can we approximate GT with MPNN?

PNN, GCN
GIN, Graph
GraphSage, Transformer

GAT...
S Jq

Kim, Jinwoo, et al. "Pure transformers are powerful graph learners." NeurlPS 2022.

27



MPNN + Virtual Node (VN)

e Virtual node helps MPNN to escape from locality constraint
Proposed in the early days of GNN; commonly used in practice and improves
over MPNN

e \Very little theoretical understanding

e This paper: show simple MPNN + VN can approximate GT under various
width/depth settings

28



Transformer

A sequence of Self-Attention layer

L(X) = softmax(XWy(XW)T )XWy,

0(n?) complexity

Vast literature on efficient/linear transformers

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Behind the success of AF2, LLM, StableDiffusion...

MatMul

29



Summary of theoretical results

Self-Attention Note

Theorem 4.1 O(1) O(1)  Approximate
Theorem 5.5 O(1) O(n?) Full

Approximate self attention in Performer (Choromanski et al., 2020)
(

Theorem 6.3 O(n
(

Leverage the universality of equivariant DeepSets
1) Full Explicit construction, strong assumption on X’
1) Full Explicit construction, more relaxed (but still strong) assumption on X

A

v

\
O
%
o;o

width

M\
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R
®

S
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4

input layer

tput layer

hidden layer 1 hidden layer 2
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MPNN + VN w/ constant width & depth

e Recall SA layer has the following form

l l l l
n n(Wé))wﬁ),W}{)m?)

(I+1) _ . @) .1
z; = 3; S (Wg):c(l), I(é)wg)) ( v T )

i

e where kernel /s(ac,y) = <(I>($),‘I)(y)>v ~ 915(33)T¢(y)
e Plugin

L0+ _ z”: ¢(a:)" ¢ (k)

7

j=1 22:1 ¢ (Qi)T ¢ (k) ’

VN in disguise

¢ (a:)" '
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MPNN + VN w/ constant width & depth

Performer is used SOTA model GraphGPS

o Coarsening, shortcuts...
o Unlikely MPNN + VN can approximate all of them

Choromanski, Krzysztof, et al. "Rethinking attention with performers." ICLR 2021

Katharopoulos, Angelos, et al. "Transformers are rnns: Fast autoregressive transformers with linear attention.” ICML 2020.
Rampasek, Ladislav, et al. "Recipe for a general, powerful, scalable graph transformer." NeurlPS 2022

Tay, Yi, et al. "Efficient transformers: A survey." ACM Computing Surveys 55.6 (2022): 1-28.

Performer and Linear Transformer fall into such category

They can be arbitrarily approximated by MPNN + VN
There are many other ways to build linear transformer

Charformer
(Toy etal, 2021)

g TokenLearner
e T

Transformer-XL Nystromformer
(Daietal, 2019) ong etal 2019)
Recurreies Memory / Memory

Downsampling  Compressed

Compressive
Transformer/  get Transformer
eeetal, 2018) (Lo atal, 2019)

Performer \
(Choromanski et a. . 2020)

Low-Rank Transformer
(Winata etal 2020)

Routing
Transformer
(Roy et al, 2020)

Funnel Poolingformer
Transformer (" 0

Big Bird
\\\\\\\\\\ ) harotal, 2020

Longformer Swin Clustered Attenti
# lustere ention
(Beltagy et al, 2020) Trﬁfj:‘,’z’nrxr _~Sinkhorn (Vyas etal, 2020)
Transformel
) i (o eta, 20200)
Fixed/Factorized/

Random Patterns

Linformer
sz Kernels

Adaptive
Sparse
Transformer

GShard
(epknetal 2020y Comvaetal 2015)

Random Feature Attention
(Pengtal, 2021) oyt 20200

) CC-Net
Blockwise Transformer G
(Qiuetal, 2019)

Linear

Sparse  clam
(Duetal,2021)

Sparse Transformer
mmmmmmmmmmmm ) Image Transformer e Switch
(Parmar etal 2018) Transformer Product Key
(Fedus etal, 2020

Mem:

............

Axial Transformer
(Hoetal, 2015)



Wide MPNN + VN

e Key observation: MPNN + VN can simulate equivariant DeepSets

DeepSets layer: L% = XA + 11—111TXB +1cT

DeepSets is permutational equivariant universal
Therefore MPNN + VN is also permutational equivariant universal
Therefore, MPNN + VN can approximate Transformer/SA layer

Drawback: upper bound on width is 0(n%)

Graph
Transformer

PNN, GCN,

GIN, IGN, DeepSets

GraphSage,
GAT...

Segol, Nimrod, and Yaron Lipman. "On universal equivariant set networks." ICLR 2020
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Deep MPNN + VN

Need strong assumption on node features
VN approximately selects (using attention) one node feature per iteration

Do some computation and send message back to all nodes

Repeat n rounds
Assumption can be relaxed by allowing a more powerful attention mechanism

(i.e. GATV2) in VN

Brody, Shaked, Uri Alon, and Eran Yahav. "How attentive are graph attention networks?.” ICLR 2022
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Experiments 1: MPNN + VN outperforms GT

e On Long Range Graph Benchmark (LRGB), it is observed that GT
significantly outperforms MPNN
e We add VN and observe that MPNN + VN performs even better than GT

Peptides-func Peptides-struct

Model # Params.
Test AP before VN Test AP after VN 1 Test MAE before VN Test MAE after VN |

GCN 508k 0.5930+0.0023 0.6623+0.0038 0.3496+0.0013 0.2488+0.0021
GINE 476k 0.5498+0.0079 0.6346+0.0071 0.3547+0.0045 0.2584+0.0011
GatedGCN 509k 0.5864+0.0077 0.6635+0.0024 0.34204+0.0013 0.2523+0.0016
GatedGCN+RWSE 506k 0.6069+0.0035 0.6685+0.0062 0.3357+0.0006 0.2529+0.0009
Transformer+LapPE 488k 0.6326+0.0126 - 0.252940.0016 -
SAN+LapPE 493k 0.6384+0.0121 - 0.268340.0043 -
SAN+RWSE 500k 0.6439+0.0075 - 0.2545+0.0012 -

Dwivedi, Vijay Prakash, et al. "Long range graph benchmark." NeurlPS 2022
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Experiments 2: Stronger MPNN + VN Implementation

Table 3: Test performance in graph-level OGB benchmarks (Hu et al., 2020). Shown is the mean + s.d. of 10 runs.

Model ogbg-molhiv ogbg-molpcha ogbhg-ppa oghg-code2

AUROC 1 Avg. Precision 1 Accuracy T F1 score 1

SAN 0.7785 £ 0.2470  0.2765 + 0.0042 -

GraphTrans (GCN-Virtual) - 0.2761 £ 0.0029 - 0.1830 =+ 0.0024
K-Subtree SAT - - 0.7522 £ 0.0056  0.1937 + 0.0028
GPS 0.7880 £ 0.0101  0.2907 4 0.0028  0.8015 + 0.0033  0.1894 + 0.0024

MPNN + VN + NoPE 0.7676 £ 0.0172  0.2823 + 0.0026  0.8055 + 0.0038  0.1727 £+ 0.0017

MPNN + VN + PE 0.7687 £ 0.0136  0.2848 4+ 0.0026  0.8027 + 0.0026  0.1719 £ 0.0013

36



Experiments 3: Forecasting Sea Surface Temperature

Discretize regions of interest as graphs
Run MPNN + VN / GT for time series forecasting
Observe MPNN + VN improves MPNN, and outperform Linear Transformer

Still fall behind TF-Net, a SOTA method for spatiotemporal forecasting

Table 5: Results of SST prediction.

Model 4 weeks 2 weeks 1 week
MLP 0.3302 0.2710 0.2121
TF-Net 0.2833 0.2036 0.1462
Linear Transformer + LapPE  0.2818  0.2191  0.1610
MPNN 0.2917 0.2281 0.1613
MPNN + VN 0.2806 0.2130  0.1540

Wang, Rui, et al. "Towards physics-informed deep learning for turbulent flow prediction." Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2020.
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Generative Coarse-Graining
of Molecular Conformations

Woujie Wang, Minkai Xu, Chen Cai, Benjamin Kurt Miller, Tess
Smidt, Yusu Wang, Jian Tang, Rafael Gomez-Bombarelli

ICML 2022



Generative coarse-graining of molecular conformations

e Coarse-Graining: speed up molecule dynamics (MD) simulation
e Recover fine-grain details lost during CG

e Super resolution for geometric graphs

e Rotation equivariant & handle vector (type 1) features

D% p(z|X)

X

generative coarse-graining

39



all-atom
system

Desiderata of back mapping

coarse-grained
hydrogens

Construct a back mapping: RV*3 - R™*3 that is

e Generality

o Generality w.r.t. arbitrary mapping and resolution
o How about very coarse representations?

e Geometric Constraint

& Chen-Cai-OSU | awesome-equivariant-network  pubiic <X Unpin  @Unwatch 42 ~ % Fork 68  ~ ¥y star 711~
o Euc ! a

coarse-grained
functional groups

coarse-grained
amino acid residues
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Framework

Variational autoencoder framework

(
e Fix coarse graining map
e O(3) invariant graph encoder & equivariant decoder
e Teston 2 systems: alanine dipeptide and chignolin
FG CG s ‘
Py
oﬂg TR o :
P> message passing (k) L ) 2’
o Ilg lo lo || o< f@oﬁ v 2
| -
°e [ Nl ¥ ' o | s [ Encoder Prior
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Results

reconstruction accuracy
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Conclusion

e Local-to-Global Perspectives on GNN SR | Transformer }
e Two works on theory of global GNN Y

o Convergence of IGN
o Connection between MPNN and GT

e One applied work:
o Generative coarse-graining of molecular conformations
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Future direction

e Expressivity research needs to go beyond connectivity and model 3d
positions & node features

e Harder question: optimization and generalization of GNN

e Equivariant GNN + Diffusion for conditional generation of structured data

e Geometric/topological tools to understand the regularity of molecule/material
spaces & hardness of learning/sampling
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Thank You!
Questions?
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